The Effects of Radio-frequency Plasma Discharge on Surface Properties and Biocompatibility of Polycaprolactone Scaffolds
نویسندگان
چکیده
The study is aimed at the assessment of surface modification of bioresorbable polymeric material (polycaprolactone (PLC) by radio-frequency magnetron discharge plasma with hydroxyapatite target sputtering. Plasma surface modification increases its roughness, the surface free energy, hydrophilicity and enhances the growth of PCL crystallites. An increase in plasma exposure times (30, 60, 150 s) increases the saturation of the polymer surface with sputtering target ions (calcium, phosphorus). The effects of plasma exposure times on the behavior of multipotent mesenchymal stem cells (MMSCs) were assessed. Plasma modification of PCL stimulates the attachment and subsequent proliferation of MMSCs, thus a 60-second plasma exposure period is considered to be an optimal modification mode. This type of plasma modification does not affect cell viability (apoptosis, necrosis). Thus, the radio-frequency magnetron sputtering of a hydroxyapatite target appears to be a promosing method to modify bioresorbable polymer surfaces (PCL) in tissue engineering.
منابع مشابه
Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior
Objective(s): Fabrication of scaffolds with improved mechanical properties and favorable cellular compatibility is crucial for many tissue engineering applications. This study was aimed to improve mechanical and biological properties of polycaprolactone (PCL), which is a common biocompatible and biodegradable synthetic polymer in tissue engineering. Nanofibrillated chitosan (NC) was used as a n...
متن کاملSurface Modification of Silicone Rubber Membrane by Microwave Discharge to Improve Biocompatibility
Wetability of biocompatible polymers can be improved by plasma surface modification. The purpose of this study was to surface modify an experimental poly (dimethylsiloxane) rubber (PDMS) material in order to improve its wetability and biocompatibility. Surface properties of the PDMS were characterized using contact angles measurement for wetability analysis. Samples of experimental silico...
متن کامل3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering
The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملEffects of Plasma Discharge Parameters on the Nano-Particles Formation in the PECVD Reactor
In this paper, the effects of plasma discharge parameters on the nano particles formation process in a plasma enhanced chemical vapor deposition (PECVD) reactor using a model based on equations of ionization kinetics for different active species are studied. A radio frequency applied electric field causes ionization inside the reactor and consequently different reaction schemically active speci...
متن کامل